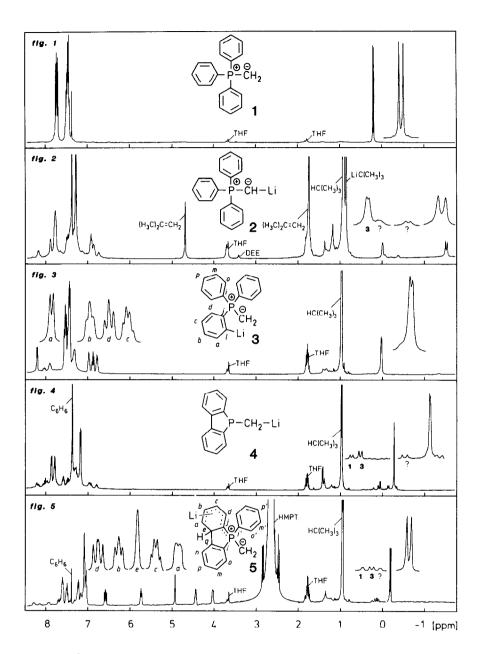
NEW EVIDENCE FOR AND NEW REACTIONS OF ORTHO-LITHIO YLIDS

Bruno Schaub and Manfred Schlosser *

Institut de Chimie organique de l'Université, Rue de la Barre 2

CH-1005 Lausanne, Switzerland


Summary: While α -lithio ylid 2 may be generated from triphenylphosphonio-bromomethylid through halogen/metal exchange, the reaction of triphenyl-phosphonio-methylid 1 with sec- or tert-butyllithium produces nearly quantitatively the o-lithio ylid 3, which is stable at -60° but slowly decomposes at higher temperatures via a cyclization product 5 to give the α -lithio phosphine 4.

In contradiction to other reports [1, 2], the reaction between triphenylphosphonio-methylid [1, 2] (fig. 1) and [1, 2] and to afford derivatives in [1, 2] and the afford derivatives in [1, 2] and

In order to study the behavior of phosphorus ylids as P-electrophiles and CH-acids in greater detail, we have embarked on a careful 1 H-, 13 C- and 31 P-nmr spectroscopic investigation. We summarize here our observations and conclusions.

- 1. When a suspension of bromomethyltriphenylphosphonium bromide (10 mmol) in 25 mL tetrahydrofuran (THF) was treated dropwise with a solution of LiBr-complexed phenyllithium $^{[5]}$ (0.8 M; 1.1 equiv.) in diethyl ether (DEE) at -100°C and stirred 1 h at -40°C before tert-butyllithium (1.5 M; 2.0 equiv.) in hexane was added at -75°C, an orange red mixture resulted. It exhibited 1 H-, 13 C- (coupled and decoupled) and 31 P-nmr signals which are in perfect agreement with an α -lithio ylid structure 2 (see fig. 2) $^{[6]}$. Moreover, treatment with methyl iodide under conditions of little trans-ylidation $^{[7]}$ gave isopropyltriphenylphosphonium iodide (mp 190 192°C, dec.) as the main product (63%).
- 2. No α -lithio ylid 2 was obtained, however, when tert-butyllithium (or sec-butyllithium) was allowed to react with "salt-free" [8] ylid 1 in THF or DEE (2 h at -75°C). In contrast, the orange-yellow ortho-lithiated ylid 3 was found to form nearly quantitatively, provided the metalating agent was applied in moderate excess (1.2 equiv.). The ¹H-nmr spectrum (fig. 3) allows an unambiguous structure assignment [9]. Additional evidence came from the conversion of o-lithio ylid 3 with methyl iodide to ethyl-diphenyl-o-tolyl-phosphonium iodide (81%, mp 176 180°C, dec.).
- 3. When solutions of o-lithio ylid 3 in THF were warmed up to 25°C (50 h) or 50°C (5 h), 5-lithiomethyl-5H-dibenzo-phosphole 4 was detected as the main product [10] (fig. 4). After hydrolysis, 43% 5-methyl-5-H-dibenzophosphole [11] ($\delta_{\rm CH_3}$ 1.39; $J_{\rm HP}$ 1.8; bp 88 90°C/10⁻³ mmHg; corresponding oxide: mp 89 91°C) together with 10% of methyldiphenylphosphine ($\delta_{\rm CH_3}$ 1.55; $J_{\rm HP}$ 3.2) were isolated and benzene was identified by gas chromatography. The degradation of 3 to 4 can be efficiently catalyzed by added potassium tert-butoxide. It finds some analogy in the base-promoted conversion of tetraphenylphosphonium bromide into 5-phenyl-5H-dibenzophosphole [12].

4. When hexamethylphosphorus triamide (HMPT) was added to 0.4 or 0.2 M solutions of o-lithio ylid 3 in THF (20 equiv. HMPT $^{[13]}$ per 1 equiv. 3 , *i.e.* 3.5 mL HMPT per 2.5 or 5.0 mL THF) and the mixture was kept 1 h at 20°C $^{[13]}$, it turned dark orange-brown and the 1 H-, 13 C- and 31 P-spectra changed in a very characteristic manner (fig. 5) $^{[14]}$. All presently available data are compatible with the formation of intermediate 5 , the precursor to the phosphole 4 .

Figures 1 - 5: ^1H -nmr spectra of triphenylphosphonio-methylid (1), α -lithio-triphenyl-phosphonio-methylid (2), σ -lithio-triphenylphosphonio-methylid (3), 5-lithiomethyl-5H-dibenzophosphole (4), η^5 -lithio-2,9-dihydro-5H-dibenzophospholio-methylid (5). Instrument: Bruker WH-360; spectral range: registered from +12.0 to -3.0 ppm, reproduced from +8.50 to -1.75 ppm; original scale: 90 Hz/cm for the main track, 20 Hz/cm for the expansions; sample temperature: -40°C; confirmation of signal assignments by double irradiation and two-dimensional $^1\text{H}/^{13}\text{C}$ -correlation.

- [1] M. Schlosser, G. Steinhoff & T. Kadibelban, Angew. Chem. 1966, 78, 1018; Angew. Chem., Int. Ed. Engl. 1966, 5, 968; Justus Liebigs Ann. Chem. 1971, 743, 25.
- [2] See also M. Schlosser, Huynh Ba Tuong, J. Respondek & B. Schaub, Chimia 1983, 37, 10.
- [3] E.J. Corey & J. Kang, J. Am. Chem. Soc. 1982, 104, 4724.
- [4] B. Schaub, T. Jenny & M. Schlosser, Tetrahedron Lett. 1984, 4097.
- [5] G. Wittig, Angew. Chem. 1940, 53, 242; H. Gilman & J.W. Morton, Org. Reactions 1954, 8, 286. Under these conditions a bromine/lithium exchange leading to ylid 1 (25%; δ_{CH_2} 0.14, J_{HP} 7.5) competes with the generation of the triphenylphosphonio-bromomethylid (70%; δ_{CHBr} 2.50, J_{HP} = 14.0) by deprotonation. The former by-product can be suppressed when lithium diisopropylamide or lithium piperidide is chosen as the base (see also G. Köbrich, Angew. Chem. 1962, 74, 33).
- [6] $^{1}\text{H-nmr}$: δ_{α} -1.51 (J_{HP} 13.5); $^{13}\text{C-nmr}$: δ_{CHLi} 5.3 (J_{CH} 108.0, J_{CP} 14.2); $^{31}\text{P-nmr}$: δ +9.5. Upon warming up a reversible temperature effect on the width and position of the $^{1}\text{H-}$, $^{13}\text{C-}$ and $^{31}\text{P-signals}$ is observed. We tentatively attribute it to the existence of an equilibrium between monomers and dimers or contact species and ion pairs.
- [7] When, for example, ylid 1 (10 mmol) in 20 mL THF is slowly added to a solution of methyl iodide (25 mmol) in 50 mL of hexane, kept at 25°C, 80% ethyl- together with 10% methyl- and 10% isopropyl-triphenylphosphonium iodide precipitate.
- [8] The α -lithic ylid 2 does show up to the extent of 10% (plus 5% of a new, unidentified product) if the metalation of 1 is carried out in the presence of 1 equiv. [3] of LiBr.
- [9] $^{1}\text{H-nmr}$: δ_{α} 8.20 (d, J 5.5); δ_{b} 6.94 (t, J 5.6); δ_{d} 6.85 (t, J_{HH} = J_{HP} 8.5); δ_{c} 6.75 (dd, J_{HH} 6.5, J_{HP} 12.6); δ_{α} 0.01 (J_{HP} 5.5); $^{13}\text{C-nmr}$: $\delta_{\mathcal{I}}$?; δ_{d} 122.3 (J_{CP} 13.8, J_{CH} 158.0 and 6.6); δ_{j} 141.1 (J_{CP} 116.7, J_{CH} : broadening); δ_{i} 138.7 (J_{CP} 67.0); δ_{m} 128.7 (J_{CP} 10.3, J_{CH} 161.4); δ_{c} 131.4 (J_{CP} 25.3, J_{CH} 159.3); δ_{p} 130.4 (J_{CH} 139.0); δ_{o} 133.1 (J_{CP} 8.3; J_{CH} 161.8); δ_{b} 126.3 (J_{CP} 4.1, J_{CH} 147.8); δ_{a} 142.6 (J_{CP} 30.8; J_{CH} 153.8) δ_{a} -4.6 (J_{CP} = 51.6; J_{CH} 133.0); $^{31}\text{P-nmr}$: δ_{o} 27.2.
- [10] $^{1}\text{H-nmr}$: δ_{α} -0.27 (J_{HP} = 1.5); $^{13}\text{C-nmr}$: δ_{α} -2.0 (J_{CP} 50.1, J_{CH} 121.1); $^{31}\text{P-nmr}$: δ 8.7).
- [11] B.R. Ezzell & L.D. Freedman, J. Org. Chem. 1969, 34, 1777.
- [12] H. Hoffmann, Chem. Ber. 1962, 95, 2563; see also G. Wittig & G. Geißler, Justus Liebigs Ann. Chem. 1953, 580, 44; E. Zbiral, Tetrahedron Lett. 1964, 1649.
- [13] According to ref. [3], such conditions were applied for the reaction of supposed α -lithio ylid 2 with fenchone. By the way, fenchone does react with 1, neat or in THF, at 25°C.
- [14] 1 H-nmr: δ_{d} 6.56 (dd, J_{HH} 7.7; J_{HP} 10.1); δ_{b} 5.72 (t, J 6.8); δ_{e} 4.91 (s), δ_{c} 4.43 (dd, J 12.0, 6.0); δ_{a} 4.00 (d, J 5.8); δ_{α} -0.19 (d, J 8.5); 13 C-nmr: δ_{a} 155.7 (J_{CP} 21.1); δ_{i} 147.5 (J_{CP} 71.8; δ_{i} , 144.3 (J_{CP} 78.7); δ_{o} 136.1 (J_{CP} 15.7, J_{CH} 147.4); δ_{o} , 131.4 (J_{CP} 8.4, J_{CH} 156.2); δ_{p} , 129.8 (J_{CH} 144.8; δ_{p} 129.4 (J_{CH} \sim 160); δ_{m} 127.8 (J_{CP} 8.2, J_{CH} \sim 150); δ_{m} , 127.6 (J_{CP} 10.2, J_{CH} 157.3); δ_{n} 127.1 (J_{CP} 5.5, J_{CH} 154.0); δ_{d} 125.0 (J_{CP} 8.8, J_{CH} 163.0); δ_{b} 123.2 (J_{CP} 7.8, J_{CH} 155.0); δ_{a} 98.0 (J_{CP} 3.9, J_{CH} 155.5); δ_{c} 63.1 (J_{CP} 13.7, J_{CH} 155.6); δ_{f} 63.1 (J_{CP} 129.0); δ_{e} 47.0 (J_{CP} 19.5, J_{CH} 130.1); δ_{t} 1.4 (J_{CP} 111.4, J_{CH} 149.5); J_{CH} 14.8.